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*include Appendix 2, Estimation of Inventory at

tual Model Development; Appendix 4, Release and
iosite Analysis and Air Transport Modeling; and

: Method.

1e analyses performed for PA and CAé%:ing
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Il
ataneous. The subsided unit geometry is assumed to match that described in
! for the duration of the compliance period. The subsidence unit will allow
[k -ecipitation and runoff from the tributary drainage area, to occur.

T'ties of PAs and CAs
1,000-year compliance period; 1,000-year assessment period; no
. doses calculated beyond the requirement beyond 1,000 years
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sidered on or after September 26, 1988 RWMS
eracting Waste disposal site only All
urces
Ember of 100 m from the boundary of the ed to reside as close to
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dvertent Considered Not considered

-man Intruder
|
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mary of Adopte ‘ormance Objectives for the Postinstitutional Control Period
riod  Pathway  Compliance Point Performance Objective

All Pathways 100 m from the Area 3 25 mrem/yr
RWMS Boundary

Atmospheric Pathway 100 m from the Area 3 10 mrem/yr

(excluding radon) RWMS Boundary

Radon Flux Density Waste Cell Cap 20 pCi/ m%s

Groundwater Uppermost Alluvial Meet state of Nevada
Aquifer Drinking Water Standards
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Table 1.3 Summary of Adopted PA Performance Objectives for Inadvertent Human Intruders

Compliance Iii‘t_e‘,.rval’::ﬂ; ’ ~  Performance Objective
‘ Acute 500 mrem
Postinstitutional control All pathways
Chronic 100 mrem/yr

Table 1.4 Summary of Adopted Objectives for CA

Objective

thway

100 m from the
Pre- and postinstitutional control ~ Area 3 RWMS All pathways 100 mrem/yr
Boundary

1-8 Performance Assessment/Composite Analysis
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ed the rooting depths of Mojave Desert or Transitional Desert

tudies have found that plant roots in NTS desert communities are
urface. This is likely an adaptation to maximize the capture of

/., 1995). Wallace and Romney (1972) described the root systems
d from a wash in Rock Valley on the NTS and reported a maximum
I(cm) (66 in.) for creosote bush, which currently does not occur at

: deepest rooting plant occurring at the site, had a rooting depth of
yrted maximum root depth for individual plants appears in

(1980) excavated the root systems of several Mojave Desert species
§ the roots to be distributed in the top 50 cm (20 in.), except for

I adscale. Less than 2 percent of the roots of these species were found

atley (1969) reported that winter annuals root in the top 20 cm
ﬁ . (1984) surveyed the rooting depths of plants at a gﬁ%slew

PR3

nean rooting depth reported for species that occur at theArea 3
ly 400 cm (160 in.) for fourwing saltbush. They report that for three
sent or more of the specimens rooted at depths less than 457 cm

is low in these desert communities. ter annual standing

s the production of a single growing seasSon, can vary from 0 to
alue of 90 kg ha™' has been recorded for the NTS (Beatley, 1969).
72) found that perennial shrubs produced the greatest biomass in

lyear study period. Their estimates of primary productivity as the
standard deviation

yorted aboveground net primary productivity of perennials in Rock
d 436 kgha™'.

si t fraction of standing biomass and net primary
f hethiyory are generally low in desert environments, suggesting
.|| of plant’biomass becomes soil detritus each year (Strojan et al.,

79) estimated that dry litter fall from perennial shrubs in Rock

’k 1terval was 217 + 141 kg ha'yr'. Total dry litter fall, including
t | be 362 + 237 kg ha™! yr'! (Strojan et al., 1979). Annual litter fall
oveground biomass among perennial species ranged from 7 to
" 1979). Annual litter fall was estimated to be from 81 to 99 percent
activity (Strojan et al., 1979).
nial plants appear to be capable of rooting directly in waste. The
' annual root biomass is expected in the upper 50 to 100 cm (20 to
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Mesozoic thrust faulting. Most thrust plates at the NTS were transported eastward with dis-
placements on the order of 10 km (6 mi) (Orkild, 1983). In Miocene to Quaternary times,
these Paleozoic rocks and the overlying volcanic units were disrupted by large-scale
extensional block-faulting, the primary cause of the present Basin and Range topography.

Bechtel Nevada (1996b) has produced a west-east cross section showing the structural setting
of Yucca Flat. Some of the faults identified in BN (1996b) can be projected to the surface
and correlated with crack trends on composite postshot surface effects maps (U.S. Geological
Survey [USGS], 1990). Many of these “younger” faults (e.g., Yucca Fault) displace features
such as the tops of zeolitization (Drellack, 1995) or internal bedding within the deeper
alluvium (Elwood et al., 1985). Other faults, considered “older,” are not readily discernable
on either surface effects maps or the top of zeolitization contour maps. Most gfthe displace-
ment on these faults is dip-slip. However, a right-lateral strike-slip compou%;notion has
been documented (Ferguson, 1981). Vertical displacement on these normal fauligranges
from approximately 610 m (2,000 ft) on the main basin-forming faults, to less than 15 m

(50 ft) on the lesser faults.

The principle basin-forming faults in Yucca Flat are the Yuc Carpetbag Faults, both
east-dipping, moderately high-angle normal faults (Figure 2. The Yucca Fault is located
in the east-central portion of the basin, trending north-south and €tending through the valley.
The Carpetbag Fault, also striking north-south, is located in the western part of the valley.
Toward the south, the Carpetbag Fault steps eastward in an en echelon fashion, becoming the
Topgallant Fault. The Carpetbag Fault represents the eastern side of a large north/south-
trending buried horst of Paleozoic carbonate r o referred to as the “Gravity High”).
This horst separates the large main basin on the'gast from several smaller subbasins on the
west.

Age estimates for these youngest faults have appeared in several studies (Knauss, 1981;
Shroba et al., 1988). Knaus brackets the age of the last natural movement along the
Carpetbag Fault between 37 a and along the Yucca Fault at less than 35 ka.

The Area 3 RWMS is located on a structural block that is bounded on the east by the west-
dipping Area 3 Fault and on the west by the east-dipping Yucca Fault. The nearest known
fault to the Area=3.RWMS passes through the eastern margin of the facility and is called the
Area 3 Faulroj ected surface trace of this fault is assumed to follow a minor, but
persistent, trepostshot surface fractures. It is unclear if the Area 3 Fault is an actual
tectonic feature reactivated by underground nuclear testing, or if it is purely a shot-induced
feature. Bechtel Nevada (1996b) undertook a literature review to determine when the Area 3
Fault was first described and how historical reports have considered the feature. In addition,
trenches were excavated that cross the trend of the Area 3 Fault to determine if tectonic
movement is discernable in the shallow subsurface.

The Area 3 Fault was first named and mapped by Williams et al. (1963) as a zone of surface
cracking caused by the BILBY and BANDICOOT events. Some of the fractures showed up
to 15 cm (6 in.) of offset. The predominant sense of motion for fractures with offset was

2-12 Performance Assessment/Composite Analysis
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I-. Yucca Flat lies within the Ash Meadows groundwater subbasin.
aquifer within this subbasin is the only subsurface pathway by

the Yucca Flat basin. Groundwater flows south from Yucca Flat
1en southwest toward downgradient areas (primarily Ash

tflows are small because inflows to Yucca Flat are limited by

he basin. The total inflow to the lower carbonate-rock aquifer
teral sources is estimated to be about 300,000 m*/yr (250 acre-
srcent of the total 430,000 m*/yr (350 acre-ft/yr) inflow to the lower
1ieath Yucca Flat calculated by Winograd and Thordarson (1975).
eath Yucca Flat of 430,000 m*/yr (350 acre-ft/yr) comprises less
utflow at the Ash Meadows discharge area, estimated to be about
\cre-ft/yr) (Winograd and Thordarson, 1975).

wer carbonate-rock aquifer indicate that the gradiéézarly flat
ai]) between Yucca and Frenchman Flats and down to the dis-

{vs. This flat gradient is an indication of a high degree of hydraulic
LiLer, which is probably a result of a high fracture (secondary)

uity does not necessarily imply unj ity of flow properties.

sath the NTS passes through a com geologic framework whose

numerous factors including stratigrapliic age, lithologic
1 geometry (Laczniak et al., 1996).
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quifer and confining ugjts). The alluvium unit is variably cemented
'Lsorted deposits of gravel and sand having high interstitial porosity
aquifer is a welded tuff and is characterized by high fracture
ats of saturated hydraulic conductivity of seven welded tuff
day (0.30 to 5.61 ft/day) (Rehfeldt et al., 1995). The tuff
zed<as a bedded, nonwelded tuff that has been altered to zeolite
volcanic reactions with groundwater, resulting in decreased rock
nts of saturated hydraulic conductivity of 34 zeolitized tuff
to 0.02 m/day (7e-6 to 0.07 ft/day) (Winograd and Thordarson,
tng unit is present only in the western part of Yucca Flat and does
3 RWMS.

eptualizations of the regional groundwater flow systems and

ystems are believed to be somewhat understood for the NTS (with

basin boundary locations, and lateral flow into and across sub-

L systems at smaller scales are poorly understood. The mechanical
l1derground testing on the local groundwater flow system beneath

' own, although groundwater mounding and fracturing are

of testing. In addition, chemical reactions between groundwater
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All historical earthquakes within Yucca Flat had magnitudes below 3.0. The largest
earthquake recorded on the NTS (magnitude 5.6) occurred at Little Skull Mountain, approxi-
mately 40 km (25 mi) southwest of the Area 3 RWMS, on June 29, 1992. In August 1971, a
magnitude 4.3 earthquake occurred along the Cane Spring fault, approximately 15 m (9.5 mi)
south of the RWMS. These earthquakes caused no surface displacement.

The Area 3 RWMS makes limited use of engineered structures, making the site less
vulnerable to earthquake damage than an aboveground facility or a facility using engineered
belowground vaults. Barring a major earthquake centered on the Area 3 RWMS, only limited
compaction, caused by the consolidation of alluvium, might be expected. Large events have
large return times. Events are highly unlikely to be centered on the Area 3 RWMS.

Together, these issues make it highly improbable that seismic activity will compromise the
integrity of the RWMS. %

2.1.6.2 Volcanism

No post-Miocene silicic volcanic centers are present in the southwest Nevada volcanic field,
a large volcanic field that covers a region encompassing the NTS (Byers et al., 1989; Sawyer
et al., 1994). The only silicic volcanic centers of Pliocene a; ounger within a 100-km
radius (62 mi) of the Area 3 RWMS are located in the Mount son area southwest of
Goldfield, and in the Funeral Mountains of southwest Death Valley (Crowe et al., 1995).

The hazards of future silicic volcanism for the NTS region are negligible (Crowe et al., 1995;
Geomatrix, 1996). There has been no silicic volcanism in the NTS region for the last 8.5 Ma.

Post-Miocene basaltic volcanism in the NTS s; divided into two episodes (Crowe,
1990): (1) large-volume basaltic volcanic centers that are spatially and temporally associated
with the waning phase of silicic volcanism (basalt of the silicic episode); and (2) small-
volume, spatially scattered basalt centers that postdate silicic volcanism (post-caldera basalt).
The latter episode of basaltic volcanism is subdivided into two cycles, including late Miocene
basalt centers that occur in tgd north-center of the NTS; and Pliocene and Quaternary
basalt centers that occur mostly=in the southwest part of the NTS region with one 3.0 Ma
center (basalt of Buckboard Mesx) present in the northeast part of the Timber Mountain
caldera (Crowe et al., 1995). The youngest basaltic volcanic center in the NTS region is the

0.07 Ma basalt of Lathrop Wells, located approximately 5 km (3 mi) south of the southwest

corner of the Crowe et al., 1997).
There are no iocene basaltic volcanic centers in the vicinity of the Area 3 RWMS.

The youngest basalt within Yucca Flat is the basalt of Yucca Flat (8.1 Ma), found at a depth
0f 226 to 308 m (740 to 1,010 ft) in drillhole UE1h, located about 1.5 km (1 mi) southwest of
the Area 3 RWMS (Marvin et al., 1989). The closest basalt centers exposed at the surface
near the Area 3 RWMS are the basalt of Paiute Ridge (8.6 Ma), located approximately 6 km
(4 mi) northeast of the Area 3 RWMS (Ratcliff ez al., 1994); and the basalt of Nye Canyon
(7.3 to 7.4 Ma), located approximately 19 km (12 mi) southeast of the Area 3 RWMS (Crowe
et al. 1997). A probabilistic assessment of the hazards of future basaltic volcanism (proba-
bilistic volcanic hazard assessment) has been conducted for the Yucca Mountain site, an area
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"Dak Spring, to the far north end of the basin, and Mine

fjpe basin, lie within Yucca Flat. The Wahmonie and Calico

vest of Yucca Flat, respectively.

ring District. Potentially economic mineral deposits may
LCommercial tungsten mining occurred in the Oak Spring
arly 1960s. Hence, the NTS region is considered to have
ce of tungsten skarn deposits (Science Applications
esearch Institute [SAIC/DRI], 1991). Molybdenum is
M, 1979). Iron is present; however, the respyrce potential
£°St volcanic rocks and alluvial basins in%%l;s region.
ite deposits in the region suggests a low to moderate
ccurs in veins associated with quartz and mercury,
Barite veins at the NTS are small and impure; they are
- barite resource. Although fluorite is present in the

e occurrence. However, i urce potential is thought
1991).

is low in southern Nye County (Garside et al.,1988;
'Let:sents simplified views of this potential, based on source

T

t and Carls 8; Harris et al., 1980) and reported

dyes in southern Nye County and the NTS
, tar sand, nor oil shale. However, a recent evaluation of
s a “cautiously optimistic view of the hydrocarbon poten-
-ea (Trexler et al., 1996). Trexler et al. (1996) found that
vide potential reservoir spaces and that the thermal history
ocarbon.

as been limited. Prior to 1953, when the Nevada Oil and
5 created, information concerning drilling is incomplete.
zh November 1992, approximately 650 hydrocarbon wells
Llighest concentration of these wells is in the Railroad
unty (Figure 2.24).

. discovered in Railroad Valley. Productive areas of these
re than 10.4 km? (less than 1.0 to more than 4.0 mi?).
pproximately 1,220 to 2,130 m (4,000 to 7,000 ft)
on from these fields is found in structural traps or a
hic traps. Producing formations include Paleozoic

Tertiary volcanics. The only oil production in Nevada

lackburn Field. The Blackburn Field, discovered in 1982,
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Table 2.3 Contaminated Soils Areas Within Yucca Flat (McArthur, 1991)

G _ Distance from

Area A __ theRWMS
r‘elﬂ:iRégvioii»:»,;.v Sy (ftz) S (m? ft) ¢ (mi) (m)
1 |GALILEO 4.80 1.34e+08 1.24e+0 664588 838780 44 7005
HORNET 5.70 1.59e+08 1.48¢+07 673500 847000 33 5244
S. Yucca 7.60 2.12e+08 1.97e+07 673500 834000 2.7 4364
Unsurveyed 8.40 2.34e+08  2.18¢+07 673500 830000 3.0 4771
2 |WHITNEY 2.70 7.53e+07  6.99¢e+06 660103 869823 8.1 13032
SHASTA 4.90 1.37e+08 1.27e+07 663323 866030 7.2 11515
DIABLO 4.00 1.12e+08 1.04e+07 662634 874146 8.5 13625
SEDAN 6.10 1.70e+08 1.58e+07 677375 876375 7 12392
3 |HORNET 8.50 2.37e+08  2.20e+07 688500 837000 0.2 305
S. Yucca 4.60 1.28e+08 1.19e+07 685500 823080 2.7 4286
Unsurveyed 19.20 5.35¢e+08  4.97e+07 700560 839000 2.5 4027
4 |KEPLER 9.70 2.70e+08 2.51e+07 664462 854233 5.4 8769
QUAY 5.20 1.45e+08 1.35e+07 675000 000 3.8 6189
Unsurveyed 1.10 3.07e+07  2.85e+06 654140 4000 7.1 11412
7 |QUAY 6.70 1.87e+08 1.74e+07 687500 000 2.7 4267
Unsurveyed 12.60 3.51e+t08  3.26e+07 696030 853000 34 5527
8 |BANEBERRY 5.20 1.45¢+08 1.35e+07 665000 882500 9.6 15471
SMOKY 3.30 9.20e+07  8.55e+06 674250 887750 9.9 15987
Unsurveyed 5.40 1.51e+08 1.40 74250 898330 11.9 19125
9 |WILSON 7.50 2.09e+08 1.94e 682500 869000 6.1 9872
Unsurveyed 12.50 3.48e+08  3.24e+07 693060 869000 6.2 9900
10 |SEDAN 7.70 2.15e+08 1.99¢+07 681000 884000 9.0 14462
Unsurveyed 12.30 3.19¢e+07 691560 884000 8.9 14379
15 [Yucca Flat 4.30 1.11e+07 684500 894350 10.9 17504
17 [Yucca Flat 11.20 2.90e+07 644750 850000 8.5 13619
6 |IS. Yucca 32.30 8.37e+07 675000 800000 7.4 11904

Plutonium

11 [Valley 3.37 9.40e+07  8.73e+06 705000 809000 6.3 10064
PIN S 0.56 1.57e+07 1.46e+06 706000 777000 11.9 19138
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2 the U-3ah/at and U-3bh inventory at closure, the assumptions made, and the
of inventory uncertainty are summarized in Section 2.5, “Waste Inventory.” The
ormation is provided in Appendix 2.

All-Pathways Analysis

1tory considered in the all-pathways analysis includes the entire inventory estimated
Vat at closure (Table 2.7). A portion of this inventory was disposed in U-3bh during
n of the PA. This analysis assumes that the entire inventory is in these two units.
nuclide concentration is assumed to be homogeneous throughout the disposal unit.
ling purposes, the inventory is divided into volatile and nonvolatile radionuclides.
lides considered to be exclusively volatile are *Ar, #Kr, '*Rn, *°Rn, and ***Rn.

se and transport of radon isotopes are not estimated for the all-pathways analysis
DOE guidance (DOE, 1996a). Tritium and "C are assumed to be %in volatile
blatile forms. As the partitioning of *H and C between volatile and noavolatile
inknown, it is conservatively assumed that the full inventory of *H and “C is

for release in both a volatile and nonvolatile form. The volatile forms of *H and *C
ed to be tritiated water (HTO) and CO,, respectively. .Assuming volatile *H is

s HTO is conservative because the dose from this forix js significantly higher than
lemental form. Carbon dioxide is the expected fo volatile "C given the dry
itions at the site. All other radionuclides are assumed t& be present in nonvolatile

r dosimetry purposes, nonvolatile radionuclides are assumed to be in a form with
dose factor (DF) with some important exceptions. Strontium is assumed to be

a form other than SrTiO,. Chlorine.s.assumed to be present as the chloride anion
1is is the most common environmen . Thorium and plutonium are assumed
ent in oxide forms based on informatign provided by generators.

of waste forms disposed in U-3ah/at and U-3bh are known, but their quantitative
s are poorly known. Common waste forms on a volume basis are believed to
hil, construction de, a@}.‘

yand compactible trash. Because quantitative information

z g, simple conservative assumptions are made. The
init is assumed to be filted with a single homogeneous waste form with conservative
ide release properties. All radionuclides are assumed to be immediately available
E- Waste form and containers are not assumed to retard release. Nonvolatile
ides areg sumed to be adsorbed onto a soil-like material. All volatile radionu-
are assumed to be available for immediate release to the air-filled pore
)latil [1'is assumed to be released to the air-filled pore space as HTO. The
ctivity of water vapor in the air-filled waste pore space is assumed to be equivalent
cific activity of waste pore water.

h/at disposal unit was formed from two adjacent subsidence craters. Waste

5 are expected to be disposed on seven tiers separated with clean 1-m (3-ft) soil

s of August 1997, all disposals in U-3bh had consisted of uncontainerized soils.
>ptual model makes no distinctions between the U-3ah/at and U-3bh disposal units.
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3.2.1.1 All-Pathways Analysis
Release and transport models were developed for the nonvolatile and volatile source term.

Nonvolatile Radionuclides. Processes expected to transport the nonvolatile radionuclide
source term to the accessible environment are:

» Advection and diffusion of solutes in soil pore water;

Uptake, translocation, and senescence of plants rooted in the waste and cap soil;
Physical transport of waste by animals burrowing into the waste and cap soil; and
* - Resuspension and erosion of cap soil.

pathwayj, is also ruled out in this assessment, since there are no sources of s € water near
the Area 3 RWMS that are likely ever to be used as sources of drinking water. PA
scenarios are limited to features, events, and processes that are currently occurring or have
occurred in the past. Current residents of southern Nevada obtain their drinking water from
the Colorado River, its tributaries, or groundwater. Native Americans have used the
Colorado River, its tributaries, springs and seeps, sandstone ﬁ ks, and flooded playas as
sources of drinking water. With the exception of playas, thesessdurces do not exist near the
Area 3 RWMS. Yucca Flat playa collects storm runoff several tithes a year, but the water
either evaporates or infiltrates shortly after the storms. Therefore, the playa cannot be con-
sidered a sustained source of water. There is also no evidence that runoff has been or is being
collected in cisterns in alluvial valleys in this area,
T

The release and transport conceptual model asstighes that the site is subsided throughout the
compliance period. Two limiting cases are analyzed separately. In the first, the upward
pathway is maximized. For this case, the current climatic conditions of high evapotranspira-
tion and low precipitation are ed to prevail in the future. Under these conditions, all
precipitation infiltrating into¢ isppsal unit returns to the atmosphere as evapotranspiration
and no recharge occurs. Advestign of solutes is assumed to be upwards in this case and
corresponds to the undisturbed conditions, where the upward hydraulic gradients are the
strongest. However, effects of subsidence are reflected in increased soil water content and
formation of cracks, both of which affect transport of radionuclides. In the second case, the
downward é‘@ is maximized by assuming that runoff-producing precipitation events
cause runof; @ e tributary drainage area to pond in the depression formed in the sub-

These ponding episodes will cause enhanced infiltration that would alter

The surface water pathway as the secondary source of contaminants and, as %osure

sided closure cap’
the soils moisture and result in possible recharge of groundwater which lies about 490 m
(1,600 ft) below the facility floor. The hypothetical severity of the assumed ponding and the
consequent advance of the wetting front toward groundwater bounds the observed wetting of
the soil column resulting from historical infiltration episodes in the craters where the waste is
emplaced. Hydrologic screening analyses of assumed ponding episodes described in
Appendix 1 indicate that the travel time to the uppermost aquifer is likely to be greater than
the 1,000-year compliance period. This rules out further consideration of the downward
pathway.
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occurrence of any agriculture at this site is a very low probability event. The concentrations
of actinides in surface soils at the HORNET GZ are based on in situ measurements and soil
sampling and are believed to be reasonably accurate.

The results are likely to be very sensitive to assumptions concerning land use or land use
controls. The UGTA source is a possible contributor to the dose, which has not been
assessed. However the dose from the UGTA source should be zero as long as land use
controls affecting groundwater access are effective. The land use assumed for Yucca Flat
represents a conservative bounding estimate. The TEDE may increase in the period of
institutional control is shorter than 250 years. All credible alternative land uses would most
likely result in much lower doses. The mean TEDE at 100 years is estimated to be only

4 mrem/yr, still significantly less than the 30 mrem/yr dose constraint. Consepgative
assumptions in the land use scenario include: %}

e There is no remediation of Soil Sites in Yucca Flat or Plutonium Valley.
e There is no access control after 250 years. The MOP is assumed to have access to Yucca

Flat.
e The MOP constructs a permanent residence in Yucca Flat. vicinity of the site.
The MOP engages in noncommercial agriculture.

Parameter uncertainty in the TEDE from the residual soil contamination area is investigated
by Monte Carlo simulation, varying the parameters considered in the sensitivity analysis
above (Figure 4.16). At 250 years, the 95th p tile TEDE is estimated to be 5 mrem/yr.
The maximum simulated value was 8 mrem/y%efore, there is a very high probability
using a conservative bounding land use option that the TEDE is less than the 30 mrem/yr
options analysis dose limit. The 95th percentile TEDE decreases to 2 mrem/yr by 1,000
years. The maximum simulated value at 1,000 years was 3 mrem/yr. All realizations at
1,000 years are below the 30 marem/yr limit triggering the options analysis. All results are
significantly less than the 1 l@ em#yr performance objective. There is reasonable assurance
that the CA performance obje s can be met assuming that access to Yucca Flat ground-
water is restricted.
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Sully

! Soil Science, University of California, Davis — 1984
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Physics, University of Montana, Missoula — 1976
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hnd transport modeling. é

\E. Barker
Statistics, Florida State University — 1979 %

Statistics, Florida State University — 1976
Mathematics, University of Kentucky — 1975

=nce Barker joined Reynolds Electrical & Engineering Co., Inc., in 1989 and
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Geology, University of Alaska — 1990
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plogy, California State University, Long Beach — 1974
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using his expertise in support of the DOE/NV Office of Environmental
gement. He previously worked for the State of Alaska Division of Geological
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The basins of the NTS are extremely arid and are characterized by very low humidity,
particularly during summer. Daily average relative humidity at the RWMS during 1996 is
shown in Figure Al.11. Daily average values ranged from a minimum of 11 percent during
spring and summer months to a maximum of 94 percent during December.

In the basins of the NTS, evaporation occurs only at potential rates following significant
precipitation events. Evaporation from soil occurs in two stages (Jury et al., 1991).
Following a precipitation event, the surface of the soil is wet and the rate of evaporation is
limited by the meteorological conditions. During this constant-rate stage, water can be
supplied to the surface from the soil below at a rate corresponding to the maximum rate of
loss determined by the available energy, wind speed, and relative humidity. As the soil dries,
the resistance to the movement of water to the surface layer increases and the rage of evapo-
ration progressively decreases. This falling rate-stage of evaporation is cm%by the soil
properties.

Evaporation from plants, referred to as transpiration, is further influenced by physical and
morphological characteristics of the plant canopy (Campbell, 1986). Evapotranspiration is
the combined loss of water due to evaporation from the soil and transpiration from
the plants.

Actual evapotranspiration and bare soil evaporation were measured using precision weighing
lysimeters in Frenchman Flat, an alluvial basin on the NTS 22.4 km (13.9 mi) from the

Area 3 RWMS. These lysimeters each consistaf a soil tank, 2 m by 4 m (6.6 ft by 13.1 ft) in
cross-section and 2 m (6.6 ft) deep, supported itive scale, and equipped with
electronic load cells and data acquisition systenis\for the continuous measurement of evapo-
transpiration. One lysimeter has been planted with native plant species in the approximate
density of the surrounding desert landscape, while the second lysimeter has a bare soil
surface. Figure A1.12 depicts the amount of water stored in each lysimeter and recorded
precipitation from Decembe ough April 1997. The amount of stored water
increased following precipitatiqR events during the winter of 1994-1995. Beginning in April
1995, the bare soil lysimeter shows a gradual loss in water caused by evaporation. A more
rapid loss is seen in the vegetated lysimeter as the plants began to transpire in the spring.
These results demonstrate the large influence of plants on water movement in the upper few
aflovium. In April, May, June, and July 1995, transpiration estimated from the

N

Stweelhare and vegetated lysimeter measurements was 60, 67, 61, and

51 percent, respegfively, of the total water loss for each month.

Seasonal changes in temperature at the land surface create vertical temperature gradients in
the alluvium. Daily average temperatures at 10-cm (4-in.) and 170-cm (67-in.) depths for
Frenchman Flat are shown in Figure A1.13. Temperature gradients induce the movement of
water vapor from warm soil to cold soil. On a seasonal basis, these gradients lead to the
transport of water vapor upward during the winter and downward during the summer.
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Figure A1.7 Monthly Maximum, Minimum, and Mean Air Temperatures at Yucca Flat for the Period
1962 to 1978
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Figure A1.12  Frenchman Flat Lysimeter Water Storage and Precipitation for December 1994 Through
April 1997
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